This document describes how to use rOceans for accessing environmental drivers and link them to spatial patterns of diversity in marine species. Here we show an example for sharks of family Carcharhinidae.
Download rOceans from GitHub and load the package
devtools::install_github("monteroserra/rOceans") library(rOceans)
First, we need to access the data and compute species diversity
For simplicity, we provide the dataset "Carcharhinidae_total_checked" which is the output obtained using oceanDataCheck() applied to raw datasets from OBIS and GBIF (see vignette 1 with Acropora example for more details on checking and filtering raw data)
data(Carcharhinidae_total_checked) Carcharhinidae_abundance_5 = oceanAbundance(occurrences = Carcharhinidae_total_checked, cell_size=5) #Visualize abundance oceanMaps(Carcharhinidae_abundance_5, logScale=T, main="Carcharhinidae abundance")
Computing species abundance matrix - and several diversity metrics
Carcharhinidae_diversity = oceanDiversity(occurrences = Carcharhinidae_total_checked, print=F) #Visualize richness oceanMaps(Carcharhinidae_diversity[[2]], logScale=T, main="Carcharhinidae richness")
For raw species richness
Env_sharks_div = oceanEnvironment(biod_grid = Carcharhinidae_diversity[[2]], biodiv_metric = "Species Richness", plot=T, log_scale=T)
For corrected species richness
Env_sharks_div_corr = oceanEnvironment(biod_grid = Carcharhinidae_diversity[[3]], biodiv_metric = "Corrected Richness", plot=T, log_scale=T)
Regression models
library(ggplot2) richness = Env_sharks_div richness_corrected = Env_sharks_div_corr colnames(richness)[1] <- "S" colnames(richness_corrected)[1] <- "S" ggplot(data=richness, aes(x=BO2_tempmean_ss, y=S)) + scale_y_continuous(breaks=c(0,15,30,45,60))+ xlab("Temperature") + ylab("Richness") + geom_point(stroke = 1.1, col="steelblue")+ geom_smooth(method = "gam", formula = y ~ s(x), col="black") + theme_bw() ggplot(data=richness_corrected, aes(x=BO2_tempmean_ss, y=S)) + xlab("Temperature") + ylab("Corrected Richness") + geom_point(stroke = 1.1, col="steelblue")+ scale_y_continuous(breaks=c(0,15,30,45,60))+ geom_smooth(method = "gam", formula = y ~ s(x), col="black") + theme_bw() ggplot(data=richness, aes(x=BO_chlomean, y=S)) + xlab("Chlorophile concentration") + ylab("Richness") + scale_y_continuous(breaks=c(0,15,30,45,60))+ geom_point(stroke = 1.1, col="forestgreen")+ geom_smooth(method = "gam", formula = y ~ s(x), col="black") + theme_bw() ggplot(data=richness_corrected, aes(x=BO_chlomean, y=S)) + xlab("Chlorophile concentration") + ylab("Corrected Richness") + geom_point(stroke = 1.1, col="forestgreen")+ scale_y_continuous(breaks=c(0,15,30,45,60))+ geom_smooth(method = "gam", formula = y ~ s(x), col="black") + theme_bw()
# to see the full list of avilable parameters (326) env_variables = sdmpredictors::list_layers() marine_layers = env_variables[env_variables$marine==T, ] head(marine_layers[,c(1:3)])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.